Frações (EF06MA08) - Matemática 9ºAno - Aula 1


Habilidade: (EF06MA08) Reconhecer que os números racionais positivos podem ser expressos nas formas fracionária e decimal, estabelecer relações entre essas representações, passando de uma representação para outra, e relacioná-los a pontos na reta numérica.

Objeto de Conhecimento: Frações: significados (parte/ todo, quociente), equivalência, comparação; cálculo da fração de um número natural; adição e subtração de frações.

FRAÇÕES EQUIVALENTES

Duas ou mais frações são equivalentes quando representam o mesmo número racional.

Exemplo:
As frações    5    ,    10    e    20    são
                     6         12          24
frações equivalentes. Observe.
                   

  • Ao multiplicar ou dividir o numerador e o denominador de uma fração por um mesmo número natural não nulo, obtemos uma fração equivalente a ela.  Essa é a propriedade fundamental das frações.
Exemplos:

Utilizando a multiplicação do numerador e do denominador pelo mesmo número natural.

a)    5    x 2 =    10     
       6    x  2      12        

b)     5    x 4 =    20     
        6    x  4      24   
 
c)    1    x 2 =    2   
       2    x 2      4


Utilizando a divisão do numerador e do denominador pelo mesmo número natural.

a)    20    : 4 =    5   
       24    : 4       6

b)     20    : 2 =    10   
        24    : 2       12

c)    6    : 3 =    2   
       9    : 3       3

SIMPLIFICAÇÃO DE FRAÇÃO

Simplificar uma fração é determinar uma fração equivalente cujos termos são menores que os da fração inicial.

Exemplos:

Simplifique a fração    90    até obter  
                                    120
 uma fração irredutível.
                                

   90    : 2 =    45    : 3 =    15   : 5 =   3 
  120   : 2       60    : 3       20   : 5     4


ADIÇÃO E SUBTRAÇÃO

Frações com denominadores iguais.

Adição e subtração de frações com denominadores iguais conserva-se o denominador e adiciona os numeradores.

Exemplo:
a)    2    +    3    =    5   
       7          7          7

b)    3    +    2    =    5    = 1
       5          5           5

c)    17    -     3    =    14    : 2 =    7   
        8           8           8    : 2       4


Frações com denominadores diferentes.

Para fazer adição e subtração de frações com denominadores diferentes primeiramente temos que deixar as frações com denominadores iguais, utilizando o processo de m.m.c. (mínimo múltiplo comum) entre os denominadores.

1º Exemplo:

a)    1    +    2    =
       2          5
1º Passo: Quando os denominadores são números primos, basta multiplicá-los.
2 . 5 = 10   -   agora o novo denominador será 10


2º Passo: Achar frações equivalentes a    1    e    2    com denominador igual               2          5 
10.

3º Passo: Observe o processo:

4º Passo: Encontradas as frações equivalentes com denominadores iguais a 10, basta realizar a operação indicada.

a)    5    +    4    =    9   
      10         10        10



2º Exemplo:

a)    2    +    3      -     3    =
       4          10          6

1º Passo: Quando os denominadores não são números primos, iremos fazer o m.m.c de 4, 10, 6 (os denominadores).






2º Passo: Achar frações equivalentes a
   2 ,    3      e     3    com denominador 
 4       10           6 
igual a 60.


3º Passo: Observe o processo:
                                                                 









4º Passo: Encontradas as frações equivalentes com denominadores iguais a 60, basta realizar a operação indicada.

   24    +    18    -    30    =    48    -    30    =    18   
   60          60          60         60        60         60


 4º Passo: Determinado o resultado vamos simplificar, ou seja, dividir o numerador e denominador da fração por um mesmo número natural.
   18    : 2 =    9    : 3 =    3    
   60    : 2      30   : 3      10

O resultado da operação será    3   
                                                    10


ATIVIDADES


1. Identifique quais das frações a seguir são equivalente a    1   .
                                                                                          9
a)     20              
       180
 b)    121              
        275
 c)    13             
       117    
d)    4    
      36


2. Substitua cada * das igualdades por um número, de modo que os pares de frações sejam equivalentes.
a)    2     =    *   
       4           8

b)    *     =    20    
       3            12

c)    6     =    2   
      18          *

d)    12    =    *   
       14          56

b)    *     =    28    
       5            35

c)   36     =    2   
      18           *


3. Determine a fração equivalente a    7    cujo denominador é 117.
                                                        13

4. Observe as figuras abaixo.


a) Represente-as em forma de fração.
b) Identifique as frações equivalentes.

5.  Efetue as operações:
a)     7    +    5    = 
        6          6         

b)    1    +    3    = 
       4          4           

c)    9    +    3    = 
       2           2   

d)    7    +    11    = 
       12         12         


6. Resolva as operações abaixo:
a)      8    +    3    -    3    = 
        24         8        12       

b)    12    -    9    = 
       20        18           

c)    9    -    3    +    5    = 
       2          4          6

d)    17    +    11    = 
         2          6


7. Marcelo comeu 1/6 de um bolo e sua irmã comeu 1/12 do mesmo bolo.
a) Considerando o bolo inteiro, que fração do bolo Marcelo e sua irmã comeram juntos?
b) Que fração do bolo sobrou?



Fonte: 
Matemática - 6º Ano - Geração Alpha -SM Educação
- CADERNO DO ALUNO SP FAZ ESCOLA - 7º ANO
- Imagens utilizadas sem restrições de uso.

Comentários

Postar um comentário

Postagens mais visitadas deste blog

PLANO CARTESIANO (EF06MA16) - Atividade 04/07 - 6º ANO

UNIDADES DE MEDIDAS (EF06MA24) - Comprimento - 6º Ano

Plantas Baixas e Vistas Aéreas (EF06MA28) - 6º Ano - 01/09